[LeetCode] Pyramid Transition Matrix

题目描述

We are stacking blocks to form a pyramid. Each block has a color which is a one letter string, like 'Z'.

For every block of color C we place not in the bottom row, we are placing it on top of a left block of color A and right block of color B. We are allowed to place the block there only if (A, B, C) is an allowed triple.

We start with a bottom row of bottom, represented as a single string. We also start with a list of allowed triples allowed. Each allowed triple is represented as a string of length 3.

Return true if we can build the pyramid all the way to the top, otherwise false.

Example 1:

1
2
3
4
5
6
7
8
9
10
11
Input: bottom = "XYZ", allowed = ["XYD", "YZE", "DEA", "FFF"]
Output: true
Explanation:
We can stack the pyramid like this:
A
/ \
D E
/ \ / \
X Y Z

This works because ('X', 'Y', 'D'), ('Y', 'Z', 'E'), and ('D', 'E', 'A') are allowed triples.

Example 2:

1
2
3
4
5
Input: bottom = "XXYX", allowed = ["XXX", "XXY", "XYX", "XYY", "YXZ"]
Output: false
Explanation:
We can't stack the pyramid to the top.
Note that there could be allowed triples (A, B, C) and (A, B, D) with C != D.

Note:
bottom will be a string with length in range [2, 8].
allowed will have length in range [0, 200].
Letters in all strings will be chosen from the set {‘A’, ‘B’, ‘C’, ‘D’, ‘E’, ‘F’, ‘G’}.

输入是一个叫bottom 的字符串以及allowed 数组,bottom 字符串代表金字塔的最底层,allowed 数组给出了所有可能的金字塔的构建方法。给定这两个数组后判断是否能建成金字塔。
解题思路是使用递归的方式,每次递归构建出上一层,递归的终止条件是当前层只有一个字符。
需要注意的是,每次递归时需要使用dfs 搜索找出当前层所有可能的构造方式。具体见实现以及注释。

C++ 实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
class Solution {
public:
bool pyramidTransition(string bottom, vector<string>& allowed) {
// 构建allowed_map, hash_map 的key是小金子塔的底部,value 是所有允许的顶部的集合
for (const string& str : allowed)
{
const string& key = str.substr(0, 2);
const char value = str.back();
if (allowed_map.count(key))
{
allowed_map[key].insert(value);
}
else
{
allowed_map[key] = {value};
}
}
// 递归搜索
return dfs(bottom);
}
private:
unordered_map<string, set<char>> allowed_map;

bool dfs(const string& bottom)
{
// 终止条件
if (bottom.size() == 1) return true;
// 首先判断上一层无法构建的情况,如果无法构建直接return false
for(size_t i = 0; i < bottom.size() - 1; i++)
{
if (!allowed_map.count(bottom.substr(i, 2)))
{
return false;
}
}
vector<string> candidates;
candidates.reserve(bottom.size() - 1);
string path;
//使用dfs的方式找到上一层所有可能结果
getCandidates(bottom, 0, path, candidates);
//遍历所有结果进行递归搜索
for(const string& candidate : candidates)
{
if (dfs(candidate))
{
return true;
}
}
return false;
}
// dfs的方式找到所有可能的上一层的结果
// 结果存储到 candidates 数组中
// cur 存储当前dfs的进度
void getCandidates(const string& bottom,
size_t idx,
string& cur,
vector<string>& candidates)
{
if (idx == bottom.size() - 1)
{
candidates.push_back(cur);
return;
}

for(const char c : allowed_map.at(bottom.substr(idx, 2)))
{
cur += c;
getCandidates(bottom, idx + 1, cur, candidates);
cur.pop_back();
}
}
};
Donate
0%